Simulation of Cl− Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl− Transporter

نویسندگان

  • Kouhei Sasamoto
  • Naomi Niisato
  • Akiyuki Taruno
  • Yoshinori Marunaka
چکیده

Transcellular Cl(-) secretion is, in general, mediated by two steps; (1) the entry step of Cl(-) into the cytosolic space from the basolateral space across the basolateral membrane by Cl(-) transporters, such as Na(+)-K(+)-2Cl(-) cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl(-) from the cytosolic space into the luminal (air) space across the apical membrane via Cl(-) channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. Transcellular Cl(-) secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl(-) channels and transporters located at the apical and basolateral membranes in transcellular Cl(-) secretion, it is still unclear how Cl(-) channels/transporters contribute to transcellular Cl(-) secretion and are regulated by various stimuli such as Ca(2+) and cAMP. In the present study, we simulate transcellular Cl(-) secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl(-) channels/transporters to transcellular Cl(-) secretion, activity of electro-neutral ion transporters and how Cl(-) channels/transporters are regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium-coupled chloride transport by epithelial tissues.

There is compelling evidence that active Cl absorption by a variety of epithelia, widely distributed throughout the animal kingdom, is the result of an electrically neutral Na-coupled transport process at the luminal membrane and that the energy for transcellular Cl movement is derived from the Na gradient across that barrier. These co-transport processes are found predominantly in "leaky" or "...

متن کامل

Potential difference measurements of ocular surface Na+ absorption analyzed using an electrokinetic model.

PURPOSE Corneal and conjunctival epithelia are capable of transcellular Na+ absorption and Cl- secretion, which drives water movement across these tissues. A recent study demonstrated with a new open-circuit potential difference (PD) technique that Cl- moves across the ocular surface in mice through Ca2+- and cAMP-sensitive Cl- channels, the latter pathway being the cystic fibrosis (CF) transme...

متن کامل

The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channel

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel belongs to the ATP-binding cassette (ABC) transporter superfamily and regulates Cl- secretion in epithelial cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the airway ...

متن کامل

SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl-/HCO3- exchange, and is inhibited by NH4+.

HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in ...

متن کامل

Chloride secretion across adult alveolar epithelial cells contributes to cardiogenic edema.

In utero, fetal lung epithelial cells actively secrete chloride (Cl) ions into the lung airspaces. Cl ions enter the basolateral membranes through Na/K/2Cl (NKCC) transporters (1), down an electrochemical gradient generated by the basolateral Na/ K/ATPase, and exit through apical anion channels, including the cAMPactivated cystic fibrosis transmembrane regulator (CFTR) (2). Na ions follow passi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in physiology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015